Asymptotic stability of neutral stochastic functional integro-differential equations*
نویسندگان
چکیده
This paper is concerned with the existence and asymptotic stability in the p-th moment of mild solutions of nonlinear impulsive stochastic delay neutral partial functional integro-differential equations. We suppose that the linear part possesses a resolvent operator in the sense given in [8], and the nonlinear terms are assumed to be Lipschitz continuous. A fixed point approach is used to achieve the required result. An example is provided to illustrate the theory developed in this work. .
منابع مشابه
Asymptotic Stability of Fractional Impulsive Neutral Stochastic Partial Integro-differential Equations with State-dependent Delay
In this article, we study the asymptotical stability in p-th moment of mild solutions to a class of fractional impulsive partial neutral stochastic integro-differential equations with state-dependent delay in Hilbert spaces. We assume that the linear part of this equation generates an α-resolvent operator and transform it into an integral equation. Sufficient conditions for the existence and as...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملInvariant and attracting sets of non-autonomous impulsive neutral integro-differential equations
Due to the plentiful dynamical behaviors, integro-differential equations with delays have many applications in a variety of fields such as control theory, biology, ecology, medicine, etc [1, 2]. Especially, the effects of delays on the stability of integro-differential equations have been extensively studied in the previous literature (see [3]-[9] and references cited therein). Besides delays, ...
متن کاملExistence, Uniqueness and Stability of Neutral Stochastic Functional Integro-differential Evolution Equations with Infinite Delay
This article presents the results on existence, uniqueness and stability of mild solutions to neutral stochastic functional evolution integro-differential equations with non-Lipschitz condition and Lipschitz condition. The existence of mild solutions for the equations are discussed by means of semigroup theory and theory of resolvent operator. Under some sufficient conditions, the results are o...
متن کاملControllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps
Abstract: The current paper is concerned with the controllability of nonlocal secondorder impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a ne...
متن کامل